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ABSTRACT: This paper addresses the optimal design and
strategic planning of the integrated biofuel and petroleum
supply chain system in the presence of pricing and quantity
uncertainties. The drop-in properties of advanced hydrocarbon
biofuels pose considerable potential for biofuel supply chains
to leverage the existing production and distribution infra-
structures of petroleum supply chains, which may lead to
significant capital savings. To achieve a higher modeling
resolution and improve the overall economic performance, we
explicitly model equipment units and material streams in the
retrofitted petroleum processes and propose a multi-period
planning model to coordinate the various activities in the
petroleum refineries. Furthermore, in order to develop an
integrated supply chain that is reliable in the dynamic marketplace, we employ a stochastic programming approach to optimize
the expectation under a number of scenarios associated with biomass availability, fuel demand, crude oil prices, and technology
evolution. The integrated model is formulated as a stochastic mixed-integer linear program, which is illustrated by a case study
involving 21 harvesting sites, 7 potential preconversion facilities, 6 potential integrated biorefineries, 2 petroleum refineries, and
39 demand zones. Results show the market share of biofuels increases gradually due to the increasing crude oil price and biomass
availability.
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■ INTRODUCTION

Biomass-derived liquid transportation fuels have been proposed
as part of the solution to climate change and our heavy
dependence on fossil fuels because biomass feedstocks can be
produced renewably from a variety of domestic sources, and the
production and use of biomass have potentially lower
environmental impacts than their petroleum counterparts.1

Consequently, many countries have set national biofuels targets
and provided incentives and supports to accelerate the growth
of bioenergy industry. In the United States, the Renewable
Fuels Standard (RFS), part of the Energy Independence and
Security Act (EISA) of 2007, establishes an annual production
target of 36 billion gallons of biofuels by 2022, of which 16
billion gallons should be advanced biofuels made from
nonstarch feedstocks to avoid adverse impacts on the food
market.2 With the development of the third generation biofuel
technologies, advanced biofuels can now be produced from
cellulosic biomass such as crop residues, wood residues, or
dedicated energy crops. Moreover, advanced hydrocarbon
biofuel products (e.g., cellulosic−biomass-derived gasoline,
diesel, and aviation fuel) are functionally identical to their
petroleum counterpart. Hence, hydrocarbon biofuels are also
named drop-in biofuels, which are essentially compatible with

the existing distribution infrastructure and vehicle engines.3

Considering all these appealing properties, it is foreseeable that
the hydrocarbon biofuel industry will undergo a rapid
expansion in the coming decades, thus requiring design and
development of biomass-to-biofuel supply chains that are cost
effective and economically viable.3

Many studies have been conducted on the design and
planning of supply chains for the first and second generation of
biofuels from diverse aspects including feedstock selection;4,5

facility location and capacity design;6−9 technology selec-
tion;10,11 feedstock seasonality;12,13 unit cost;14 a multi-
objective model considering economics, financial risk,15

sustainability;9,13,16 and social impact.11 Also, these models
were applied to various countries, such as the United States,5,13

United Kingdom,7,17 Italy,8 etc. While most research works
consider the design and development of biomass-to-biofuel
supply chains independent of the existing petroleum supply
chains, the U.S. Department of Energy (DOE)3 has pointed out
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the opportunities for the integration of emerging hydrocarbon
biofuel supply chains with existing petroleum production and
distribution infrastructure. Although minimum retrofitting costs
would be required on petroleum refinery units for compatibility
reasons, the integration indicates considerable capital savings
on the construction of biofuel production facilities, which
would help the biofuel products to be cost competitive while
bringing in extra profits and environmental benefits to the
petroleum refineries.3,18 However, the literature on the
integration and synthesis of the biofuel and petroleum industry
from a supply chain point of view is quite limited,18,19 which is
the focus of this work. The integrated supply chain system
necessitates planning models to coordinate the additional
biomass-related material streams with original crude oil-derived
material streams in the petroleum refineries. Integration of
supply chain design and strategic planning can provide a higher
modeling resolution of the integrated supply chain system and
help to improve the overall economic performance by taking
advantage of the synergy.
Besides the aforementioned issues, the uncertainties

potentially involved in the integrated biofuel and petroleum
supply chains are also critical and should be taken into account.
Major types of uncertainty include seasonal supply of biomass
feedstocks, fluctuation of biofuel demands, volatility of crude oil
prices, change in processing costs due to technology evolution,
as well as future plan feasibility and potential economic risk.20

Failure to consider these uncertainties may lead to nonoptimal
designs and cause significant extra expenses to accommodate
unexpected events. The widely used approaches for optimiza-
tion under uncertainty21 include robust programming,22,23

chance-constraint programming,24 stochastic inventory25,26 and
stochastic programming.27−29 Robust optimization may be
suitable for the case where the uncertain parameters are known
only within certain bounds but not for those with certain
probability distributions.22 In the chance-constrained approach,
uncertainties are represented through random variables with
known probability distribution and are included in the
constraints.24 As an extension of the chance-constraint method,
the stochastic inventory approach can effectively deal with
demand and supply uncertainties in supply chain design and
operations through simultaneous optimization of the safety
stocks and supply chain design, with the expense of adding
some nonlinear inventory terms.25,26 Stochastic programming,
which is the approach we will adopt in this work, is able to take
advantage of our knowledge on the probability distribution into
the optimization framework.27 In practice, the space of
uncertain parameters is discretized into scenarios, with each
scenario representing a potential realization of uncertainty. By
employing the typical two-stage stochastic programming
method, we can explicitly incorporate all the scenarios and
optimize the expectation in the objective function. Further-
more, stochastic programming is straightforward to formulate,
thus making it the most widely used approach for optimization
under uncertainty in both biofuel15,30,31 and petroleum supply
chain optimization.28,32−35

In this paper, we propose a two-stage stochastic MILP model
for optimal design and strategic planning of the integrated
hydrocarbon biofuel and petroleum supply chain considering
uncertainties in biomass availability, fuel demand, crude oil
prices, and technology evolution. Existing petroleum refineries
are considered as potential facilities for the upgrading of
biocrudes. In order to leverage the synergy and thus improve
the overall economic performance, we explicitly model

equipment units and material streams in the retrofitted
petroleum processes and propose a multi-period planning
model to coordinate the various activities (e.g., acquisition,
production, and delivery) in the petroleum refineries on the
backdrop of an integrated biofuel and petroleum supply chain
system. The major novelties of this work are summarized as
follows: (1) integration of biofuel supply chains with existing
petroleum supply chains with detailed modeling of refinery
operations and (2) two-stage stochastic programming approach
to investigate the impacts of uncertainties (e.g., biomass
availability, biofuel demand, crude oil prices, and technology
evolution) on the multi-period design and planning of
integrated biofuel and petroleum supply chains.
The rest of the paper is organized as follows. We first provide

a background introduction to the opportunities and challenges
for the integration of biofuel and petroleum supply chains,
followed by a description of methodology proposed in the
paper. This includes a general introduction of the stochastic
programming approach, a formal problem statement, and a
mathematical formulation. To illustrate the performance of the
proposed model, we present a case study along with discussions
of the results. The paper is concluded at the end.

■ BACKGROUND
Integrated Biofuel and Petroleum Supply Chain. A

typical advanced hydrocarbon biofuel supply chain consists of
harvesting sites, biorefineries, preconversion facilities, upgrad-
ing facilities, and demand zones.1 The biomass is cultivated and
harvested in harvesting sites. The harvested biomass feedstocks
have two alternative destinies.
(1) They can be sent to integrated biorefineries for direct

biofuel. The state-of-the-art technologies for biomass con-
version can be classified into two groups: biochemical
conversion and thermochemical conversion. Biochemical
conversion decomposes the biomass cell walls by enzymes or
acids to extract sugars. Then these sugars are upgraded to
biofuels using microorganisms. The biochemical conversion
pathway benefits from sustainable and mild operating
conditions but encounters the bottleneck of discovering
efficient enzymes for hydrolysis and microorganisms for sugar
conversion, as well as industrial scale-up. The thermochemical
conversion pathway, on the other hand, applies heat, pressure,
and catalyst to convert biomass to a variety of biofuels,
including renewable gasoline, diesel, jet fuels, and chemicals, as
well as heat and power. The most common pathways of
thermochemical conversion involve gasification, fast pyrolysis,
and hydrothermal liquefaction. In the gasification process,
biomass from pretreatment facilities is broken down and
oxidized into syngas, which constitutes mainly carbon
monoxide and hydrogen. Then the syngas undergoes cleanup
and conditioning processes to remove contaminants and adjust
the hydrogen−carbon monoxide ratio for the following
Fischer−Tropsch stage. In the pyrolysis process, biomass is
decomposed in the absence of oxygen at a lower temperature,
and this reaction results in liquid biocrude oil, which can be
upgraded to hydrocarbon biofuels via hydrotreating and
hydrocracking after a cleanup step. Unlike gasification and
pyrolysis, other thermochemical conversion pathways are still in
their infancy status, so we consider only gasification and
pyrolysis as the potential technology alternatives for integrated
biorefinery in our work.
(2) The feedstocks enter a two-stage conversion process:13,36

preconversion and upgrading. The preconversion stage
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converts biomass into biocrude (e.g., pyrolysis oil) that is
economical and efficient for transportation, whereas the
upgrading stage upgrades the biocrude into final products
(e.g., gasoline, diesel).37,38 Because of the low energy density
and high moisture content of the biomass, transporting biomass
is much more expensive than transporting crude oil. In contrast,
transporting biocrude is relatively easier and cheaper. There-
fore, we can build the preconversion facilities and upgrading
facilities in different locations in order to take advantage of the
geographical benefits associated with each process. The
resulting centralized distributed network13,36 can improve the
economic performance of the supply chain. All the fuel
products are sent to the demand zones to meet customers’
needs. By contrast, in a typical petroleum supply chain, crude

oils are first purchased from suppliers and then processed in the
petroleum refineries. The fuel products are usually delivered to
demand zones using pipelines or trucks.
Both the DOE3,17 and Universal Oil Product (UOP)39 noted

that advanced hydrocarbon biofuel can take advantage of the
existing petroleum refinery infrastructure, which means that it is
possible to use the upgrading unit in the existing refinery to
upgrade biocrude into final products. Tong et al.18 also
quantitatively analyzed the three possible insertion points in
petroleum refineries. In this work, we propose a novel
superstructure of the integrated biofuel and petroleum supply
chain in Figure 1. The strategic design and planning in both
biofuel and petroleum supply chains are simultaneously
optimized. Note that a well-designed supply chain will not

Figure 1. Superstructure of integrated biofuel and petroleum supply chain.

Figure 2. Flowchart of a typical refinery.
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choose to install additional upgrading facilities instead of using
existing petroleum infrastructures.18 Therefore, we do not
consider an independent upgrading facility in the integrated
supply chain. We assume that all the biomass processed in a
preconversion facility is sent to a petroleum refinery
immediately.
Planning of Petroleum Refinery. The integrated supply

chain system necessitates planning models to coordinate the
additional biomass-related material streams with original crude
oil-derived material streams in the petroleum refineries.
Moreover, integration of supply chain design and strategic
planning can provide a higher modeling resolution of the
integrated supply chain system and help to improve the overall
economic performance by taking advantage of the synergy. In
fact, units in refinery can have different product yield and
different connectivity based on various crude oil supply and
demand profiles. Therefore, the detailed planning of a refinery
should be integrated in the oil supply chain model.40 Figure 2
shows a typical flowchart of a petroleum refinery. Here, we give
a brief description of the units in a typical refinery based on the
work by Al-Qahtani et al.41 Crude distillation units (CDU) are
used to separate oil into fractions by distillation according to
their boiling points. Catalytic reforming units (CRU) convert
naphtha, which typically has low octane ratings, into high
octane liquids. Delayed coking units (DCU) convert heavy
feedstocks to more desirable and valuable products with higher
quality. Fluid catalytic cracking units (FCC) break down and
rearrange complex hydrocarbons into lighter molecules in order
to increase the quality and quantity of desirable products.
Hydrotreating units (HT) use hydrogen to upgrade feedstock
to the desired products, e.g, remove sulfur in diesel.
Hydrocracking units (HCU) combine catalytic cracking and
hydrogenation where the feed is cracked in the presence of
hydrogen to produce more desirable products. Gasoline
blender (GB) and diesel blender (DB) are the virtual blending
units that blend feedstocks into gasoline and diesel products.
The CDU fractionates crude oil into the following

hydrocarbon streams: naphtha (NA), light diesel (LD), vacuum
gas oil (VGO), heavy vacuum gas oil (HVGO), and vacuum
residue (VR). Connections between different streams are
defined as movement. The trucks denote the in-plant and out-
plant points, which represent the supply of raw materials (e.g.,
crude oil, MTBE) going into the plant and fuel products (e.g.,
gasoline, diesel) going out of the plant. Methyl tertiary butyl
ether (MTBE), which is a gasoline additive, is used as oxidant
to increase the octane value in gasoline. In our model, MTBE is
treated as a type of raw material. The strategic planning in
petroleum refineries is to decide the optimal processing
amount, product yield of each unit, flow rate of streams and
movements, crude oil procurement, etc. This gives a high
resolution of decisions in the integrated supply chain.
Processing Biocrude Oil in Petroleum Refinery.

Nowadays, many researchers are investigating the feasibility
and potential of producing biofuels in existing petroleum
refineries.3,39,42 Huber and Corma43 summarized the techni-
ques for converting biomass into biofuel in existing petroleum
refineries. They noted that catalytic cracking, hydrotreating, and
hydrocracking are the three main techniques for converting
biomass to biofuels. It should be noted that biomass cannot be
directly processed in petroleum refineries. Therefore, it must be
first converted into biocrude in the preconversion facilities. The
biocrude considered in our paper is pyrolysis oil, which is the
product of the preconversion facility with fast pyrolysis

technology. Researchers found that direct use of pyrolysis oil
in a refinery requires complete deoxygenation and a low acid
number to prevent corrosion.39,42 Therefore, before its
upgrading in the petroleum refinery, pyrolysis oil should be
appropriately processed using 317 stainless cladding,39 which is
not a standard refinery unit, to lower the acid number. In this
paper, we consider two technologies for upgrading pyrolysis oil
into fuel products, which are studied by Marker et al.39 and
Jones et al,42 respectively. One approach is that pyrolysis oil can
be processed by hydrotreating units and then coprocessed with
VGO in FCC units. The other is that pyrolysis oil is processed
by hydrotreating units followed by HCU units. In this work, we
denote them as FCC integration and HCU integration,
respectively. Before being processed, pyrolysis oil should be
pretreated in the 317 stainless steel system to reduce the acid
number. Note that new hydrotreating units should be installed
because the catalyst used in hydrotreating units is dedicated to
specific processing purpose, thus not fungible. Figure 3 shows

the two integration technologies for upgrading pyrolysis oil in
the petroleum refinery. Note that the 317 stainless steel system
is not depicted in the figure for clarity. It also should be noted
that in order to maintain steady conversion, the processing
amount of pyrolysis oil cannot exceed a certain ratio of capacity
of integrating units.42

The whole flowchart of the refinery integrating pyrolysis oil
processing is shown in Figure 4. The units in blue are the new
ones required for processing pyrolysis oil. Note that in order to
track the fuels converted from pyrolysis or crude oil, we add
some virtual outlet streams (e.g., PDO and PGASO of FCC1 in
Figure 4, denoting diesel and gasoline produced only from PO
inlet stream).

■ METHODOLOGY
Stochastic Programming. As mentioned in previous

sections, uncertainties considerably impact the economic
performance of the integrated supply chains, among which
seasonal supply of biomass feedstocks, fluctuation of biofuel
demands, volatility of crude oil prices, and change in processing
costs due to technology evolution are considered as the most

Figure 3. Two technologies for processing pyrolysis oil in petroleum
refinery.
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critical ones.1 The most widely employed approach for
optimization under uncertainty is the stochastic programming
method.27 Two-stage stochastic programming with recourse is
the most typical and classic stochastic programming model,
where the first-stage variables represent “here and now”
decisions, which must be made before the realization of
uncertainties, while the second-stage variable are “wait and see”
decisions, which can be made only after the realization of
uncertainties. Typically, the objective of stochastic program-
ming is to optimize the expected value of a performance
function. Scenario-based stochastic programming is an
approximation approach to transform the intractable stochastic
problem into a tractable one. The main idea is to address only a
finite number of selected realizations of uncertainty in the
optimization. Each realization is regarded as one scenario and is
assigned with a probability.28 The scenario formulation retains
the flexibility of choosing different second stage decisions
according to different realization of uncertainty, and it often
achieves a good estimation of the expected performance and
return reasonable solutions.44 Scenarios are usually defined
according to one’s insight and modeling experience or via
advanced sampling methods (e.g., Monte Carlo sampling45).
The typical formulation of scenario-based stochastic program-
ming is given by eq 1

∑+

≤
+ ≤ ∀

c x p q y

s t Ax b

Tx Wy h s

min

. .

,

T

s
s s

T
s

s s s s (1)

where the different realizations of uncertain parameters are
characterized by scenario s and corresponding probability ps. x
and ys are first-stage and second-stage variables, respectively.
The objective function includes two parts. The first term
indicates the cost related to first-stage variables, called first-
stage cost; the second term, which is the summation of the cost
for each scenario with predefined probability, is the expected
second-stage cost. In a general supply chain optimization

problem, design variables are usually regarded as first-stage
variables, and operation variables are considered as second-
stage variables.

Problem Statement. The superstructure of the integrated
biofuel and petroleum supply chain is shown in Figure 1. We
are given a set of biomass feedstock harvesting sites, potential
preconversion facilities locations, potential integrated biorefi-
neries locations, crude oil suppliers, existing petroleum
refineries, and demand zones. We are given a planning horizon
modeled as a number of time periods with identical duration.
We are given a set of biomass feedstocks (namely, crop
residues, wood residues, and energy crops) with their major
properties, including moisture content, harvesting cost, and
availability at each harvesting site specified. We are also given a
set of crude oils with known purchasing cost and annual
availability. The selling prices and demand of each type of fuel
products (e.g., gasoline and diesel) at each demand zone are
given as well. In preconversion facilities and biorefineries, we
are given a set of conversion technologies, capacity levels and
corresponding conversion rates, operation costs, and capital
costs. The flowchart of each petroleum refinery is given. The
capacity and conversion rate for each unit are also known. Two
integration technologies are considered in our model. One is to
coprocess the pyrolysis oil with VGO in the FCC (FCC
integration). The other is to process the pyrolysis oil in the
HCU (HCU integration). The capacity level, operating cost,
and capital cost of installing new units for each integration
technology are also given. The available transportation mode,
transportation cost, and the government incentive for facility
construction and biofuel sales are known.
The objective is to minimize the systems-wide cost of the

integrated biofuel and petroleum supply chain system over the
planning horizon by optimizing the following decision
variables: (1) supply network structure, including (1a) number,
size, locations, technology selection, and year of installation of
the preconversion facilities and the integrated biorefineries and
(1b) retrofitting petroleum refinery, including selecting
integrating technology, corresponding unit size and installation
time; (2) purchase amount of each type of biomass feedstock

Figure 4. Flowchart of the refinery integrating pyrolysis oil processing.
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and crude oil from each supplier in each year; (3) amount of
feedstock consumption, material processing, and product yield
in preconversion facilities, integrated biorefineries, and
petroleum refineries, as well as the material flow rates
associated with each unit in the petroleum refinery; and (4)
selection of transportation mode and the transportation
amount for each link.
We assume the crude oil availability, crude oil price, biomass

availability, harvesting cost, government incentive, and product
demand are considered uncertain. Production cost and
investment cost for biofuel production facilities are also
considered uncertain. A number of possible scenarios regarding
the uncertain parameters are given. In our stochastic
programming model, all the decisions related to supply chain
design are regarded as first-stage variables. These variables
include the number, size, locations, technology selection, and
the installation time for preconversion facilities, biorefineries,
and hydrotreating units in petroleum refinery. All the other
variables related to operation are regarded as second-stage
variables that can be made after the uncertainties are realized.
These variables include the purchase amount of biomass and
crude oil, processing amount of raw materials and product yield
of fuels in any production facilities, transportation amount,
material flow in refineries, etc.
Mathematical Formulation. We develop a multi-period

stochastic MILP model addressing the optimization of design
and planning for integrated hydrocarbon biofuel and petroleum
supply chain under uncertainty. The model for petroleum
refinery planning is based on the work of Tong et al.34 and
Neiro et al.40 The model for biofuel supply chain is based on
the work of Tong et al.18 Considering the length of the article,
we present a brief introduction of the proposed model in this
section. For concise reasons, the detailed mathematical
formulation and nomenclature are provided in the Supporting
Information.
The objective in eq 2 is to minimize the expected overall cost

over the entire planning horizon. This cost involves the capital
costs for facility/unit installation, operation costs for fuel
production, penalties for failure to meet the demands, and
government incentives. IR is the interest rate used for the
computation of present value in multi-year planning. In our
model, all the design decisions are considered first-stage
variables, while the others are second-stage variables. Therefore,
in the objective function (1), the first term represents the first-
stage cost, and the second term stands for the expected second-
stage cost, which is the summation of the cost in each scenario
with the predefined probability πs. The variables x in the first
term of the objective function is independent of the realization
of uncertainty. However, the variables ys in the second term of
the objective function can be executed only after the realization
of uncertainty. Therefore, the subscript s indicates decisions
under different scenarios.

∑
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+ ×
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The capital cost consists of the installation costs of the
preconversion facilities tcapkk,t,s, biorefineries tcapll,t,s, and
retrofitting of the petroleum refineries tcapsrsr,un,t,s.
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The operation cost consists of purchase cost, operation and
maintenance (O&M) cost, production cost, and transportation
cost. All the costs are evaluated by linear relationships of the
real flow rates. One can refer to the Supporting Information for
more details.
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The government incentive includes construction incentive
and volumetric incentive for biofuel production and usage.
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The model satisfies mass balance constraints, production
constraints, capacity constraints, and logical constraints. The
mass balance constraints define the mass conservation of
materials at each node of the supply chain. The production
constraints describe the input−output relationship at the
material processing facilities for the production of both biofuel
and petroleum. Capacity constraints limit the raw material
purchases, production amounts, and transportation flows.
Logical constraints, usually related to first-stage binary 0−1
variables, regard the existence of a processing facility,
equipment unit, or transportation link.
The demands for gasoline and diesel at demand zones can be

fulfilled by fuel products either derived from biomass or crude
oil with no bias. Pyrolysis oil produced from preconversion
facilities can be upgraded into fuel products in retrofitted
petroleum refineries by adding integrating units. Therefore, we
introduce binary 0−1 variable inusr,un,u,t to indicate whether the
integrating unit (e.g., hydrotreating unit for pretreating before
FCC integration or HCU integration) un in refinery sr with
capacity level u is built at time period t. The continuous variable
ucapsr,un,t, indicates the capacity level of integrating unit un in
refinery sr at time period t. ucapsr,un,t specifies an upper bound
for the processing amount of each unit in the petroleum
refinery. In this way, we establish the link between the
hydrocarbon biofuel supply chain and petroleum supply chain
as shown in (S39−S48, Supporting Information).

■ CASE STUDY
Input Data. To illustrate the application of the proposed

model, we present a case study on a potential integrated biofuel
and petroleum supply chain involving 21 biomass harvesting
sites, 4 petroleum crude oil suppliers, 7 potential preconversion
facilities, 6 integrated biorefineries, 2 existing petroleum
refineries, and 39 fuel demand zones. The planning horizon
considered in our case is 20 years with each year as one time
period. Please note that the planning horizon is a fundamental
subjective decision that is not influenced by objective market
conditions, so it is not included in the uncertain parameters. All
the data used in this case study is adopted and customized from
existing literature and reports.3,13,18,34,46,47 Three major types of
biomass are considered in our case, namely, crop residues (e.g.,
corn stover), energy crops (e.g., switchgrass), and wood
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residues (e.g., forest residues). The annual yields of each type of
biomass resources in each harvesting site are given in the
Supporting Information. The harvesting loss is assumed to be
5%. We consider two major types of liquid fuel products,
namely, gasoline and diesel. The demands of each type of fuel
product in each demand zone in the first time period are also
specified in the information.
In this model, we consider two available conversion pathways

in the integrated biorefinery, namely, “gasification + FT
synthesis” and “pyrolysis + hydroprocessing”. Three capacity
levels are considered for each biorefinery in the ranges of 20−
50, 50−100, and 100−200 MM GGE/y. We assume rotating
cone reactor pyrolysis is used in all preconversion facilities. The
capacity levels considered for preconversion facilities are 200−
500, 500−1000, and 1000−2000 kton/y. We take into account
the economy of scale by using a scale factor of 0.6 to calculate
the capital cost of conversion facilities.36 In order to preserve
the advantage of linear formulation, the original six-tenths
power functions are approximated by continuous piecewise
linear functions with three partition points 50,100 and 200 MM
GGE/y. Further information regarding the capacities, total
capital investment, and yield is provided in the Supporting
Information.
We consider two existing petroleum refineries in our model,

whose flowcharts are shown in Figures 2 and 5, respectively.
The only difference between refinery 1 and 2 is that we do not
have HCU units in refinery 2. Therefore, only FCC integrating
technology can be applied in refinery 2. We also consider three
capacity levels for the hydrotreating unit in the petroleum
refinery in the range of 50−125, 125−250, and 250−500 M
gal/y. We consider the octane number as the quality indicator
of gasoline blending. We assume the octane value of inlet
streams of the GB unit is constant. The requirement of the
octane number for gasoline is provided in the Supporting
Information. The maximum mixing ratio of pyrolysis oil into
the FCC or HCU is set to 20% in the first 5 years and is
increased to 30% in the later 15 years due to technology
evolution.
The interest rate is assumed to be 10%. The construction

incentive for each facility installation cannot exceed $4,000,000
and cannot be above 10% of the total capital investment.48 The
volume incentive is set to $1/gallon for all fuel products derived
from biomass feedstocks.48

Scenario Generation. Uncertainties must be considered in
the design and strategic planning to guarantee the development
of a reliable integrated supply chain in dynamic marketplace.1

In our model, we consider biomass availability, product
demand, crude oil price and availability, biomass harvesting
cost, operation cost, capital cost, and government incentive as
uncertain parameters. All the data for scenario generation is
estimated and customized based on historical data.3,46,47,49

Considering the correlation between these uncertain parame-
ters, we further categorize them into four groups: biomass
availability, fuel demand, crude oil price and availability, and
biofuel technology evolution. For each group, we define a series
of scenarios as follows.50

Spurred by RFS,2 the availability of cellulosic biomass
resources is foreseeable to increase in the future. We assume
two scenarios for biomass availability, namely, LOW and
HIGH. The probability of each scenario is assumed to be 50%.
In the LOW scenario, biomass availability is assumed to
increase by 5% every year, while in the HIGH scenario 7%. For
the demand uncertainty, we consider two scenarios: LOW
(50%) and HIGH (50%). In the LOW scenario, the fuel
demand increases by 1% every year, while in the HIGH
scenario 2.5%. For the crude oil uncertainty, we consider two
scenarios: LOW (50%) and HIGH (50%). In the LOW
scenario, we assume the crude oil price increases by 7% every
year and the availability of crude oil decreases by 1% every year,
while in the HIGH scenarios crude oil price increases by 10%
every year and the availability of crude oil decreases by 1.5%
every year. In both scenarios, we assume the percentage of
increase in crude oil price is higher than 5%, which equals to
the rate of inflation, because the price of the crude oil is
foreseeable to soar due to its shortage.3 The last type of
uncertainty considered is related to the evolution in biofuel
technologies. In general, with the improvement in biofuel
technologies, the costs of biomass acquisition, biofuel
production, and facility construction will gradually decrease.
Therefore, we consider three scenarios for technology
evolution: LOW (25%), BASE (50%), and HIGH (25%). In
the LOW scenario, all the aforementioned costs increase by 2%
every year. In the BASE scenario, the costs increase by 3% per
year, and in the HIGH scenario, they increase by 5% per year.
Note that the higher the percentage of increase in costs, the less
improvement in the biofuel technologies. The costs in the

Figure 5. Flowchart for second refinery.
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HIGH scenario actually remain constant as the percentage of
increase in costs is equal to the rate of inflation. On the basis of
these assumptions, we can generate a total of 2 × 2 × 2 × 3 =
24 scenarios, as shown in Figure 6.
Results. The optimization is performed on a Dell computer

with an Intel Core i5-2400 3.10 GHz CPU and 8 GB RAM.
The MILP model is coded in GAMS 24.0.151 and is solved
using CPLEX 12.5 with three processing cores under parallel
mode. The optimality tolerance is set to 1%. The stochastic
model consists of 1320 binary variables, 186,245 continuous
variables, and 625,902 constraints.
The minimum total cost is $282.926 billion. The solution

time is 31,996 CPUs (around 9 h). The optimal design of the

integrated supply chain is shown in Figure 7. In the optimal
solution, six preconversion facilities are built, with capacity
levels ranging from 500 to 2000 kton/y. Three (PR2, PR4, and
PR5) are built in the first year, while two (PR1 and PR6) are
built in the second year. PR7 is built in the ninth year due to
the increasing biomass availability and product demand. Six
integrated biorefineries are built with capacity levels ranging
from 50 to 200 M GGE/y. Three of the integrated biorefineries
(BI2, BI3, and BI5) use the technology of “gasification + FT
synthesis”, while the others use the technology of “fast pyrolysis
+ hydroprocessing”. Unlike the case of preconversion facilities,
only three biorefineries (BI2, BI3, and BI5) are built in the first
two years, while the others are built in the last 10 years. All the

Figure 6. Scenario generation for the integrated supply chain model.
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existing petroleum refineries are utilized and retrofitted for
biofuel production, which indicates that the integration of
biofuel supply chains with petroleum refineries indeed helps to
reduce the overall cost while satisfying the demands for
hydrocarbon transportation fuels. The hydrotreating units using
FCC integration are built with full capacity in both refinery SR1
and SR2 in year 1 and 2, respectively. In contrast, the
hydrotreating unit using HCU integration is built with a
capacity of 191 M gal/y in year 14. This indicates that FCC
integration may present better economic performance than
HCU integration. The transportation connection profile for
delivering materials between the nodes in scenario 16 is also
depicted in Figure 7. We choose scenario 16 as the example
because its overall cost is the closest to the optimal expected
cost among all the scenarios. We show part of the results on

strategic planning by depicting the processing amount of CDU
in retrofitted petroleum refineries (Figure 8). Although the
annual processing amount of CDUs fluctuates due to the
demand and supply uncertainties, the total processing amount
of CDUs in SR1 increases gradually from 1400 to 1900 M gal/
y. In contrast, the total processing amount of CDUs in SR2
decreases from 5200 to 4600 M gal/y from year 1 to year 20.
However, the total processing amount for all four CDUs
decreases over the planning horizon indicating that we are
producing more hydrocarbon biofuels as replacement of
petroleum fuel products.3

The total costs corresponding to all the scenarios are shown
on the right in Figure 6. Although each scenario is solved to
optimality, the production scale considered in this supply chain
is very large. Moreover, we define the objective function by

Figure 7. Optimal results for supply chain design and transportation links for scenario 16.
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converting the costs emerging during the 20 years to their
present values, which further enlarges the absolute value of the
total cost. Therefore, given the optimal result from similar
work,52 the large costs are reasonable. Scenario 12 leads to the
highest cost of $332.494 billion, which is 17.5% higher than the
expected cost. It corresponds to the scenario of LOW biomass
availability, HIGH demand, HIGH crude oil price, and HIGH
operation cost with no technology improvement. Scenario 13
leads to the lowest cost of $239.699 billion, which is 15.3%
lower than the expected cost. It corresponds to the scenario of
HIGH biomass availability, LOW demand, LOW crude oil
price, and LOW production cost with significant technology
improvement.
Next, we perform a comparative analysis to develop more

insights into the scenario results. Again, we take scenario 16 as
the reference scenario, whose cost is the closest to the expected
total cost among all 24 scenarios. Scenario 16 corresponds to
HIGH biomass availability, LOW demand, HIGH crude oil
price, and LOW production cost indicating significant
technology improvement. We compare four selected scenarios
(scenario 4, 13, 18, and 22) with the reference scenario to see
how different types of uncertainty would influence the optimal
decisions. The reason for choosing the four scenarios is that
each of these scenarios only differs from the reference scenario
in one uncertain parameter. Figure 9 shows the total cost of the
four selected scenarios and the reference scenario. Scenario 22
has a much higher cost than the other four scenarios, indicating
that the total cost is very sensitive to the changes in fuel
demands. When demands increase, there will be more raw
materials consumed and more hydrocarbon fuels produced,

thus leading to significant increase in the total cost. Scenario 13
has the lowest cost because it corresponds to a lower crude oil
price and higher crude oil availability. When crude oil price
increases and its availability decreases, the integrated supply
chain will intend to produce more hydrocarbon fuels from
biomass so as to reduce the total cost. Comparing scenario 4
with scenario 16, we can see that when the biomass availability
increases, we also tend to produce more hydrocarbon fuels
from biomass. However, the impact of biomass availability on
the total cost is relatively small compared with the uncertainty
in crude oil price and fuel demand. With the improvement in
biofuel technologies, the total cost will decrease as we can see
from the comparison between scenario 16 and scenario 18.
However, the impact of technology evolution is not very
significant. This is because at the current stage of the integrated
supply chain, most of the fuel demands are still fulfilled by
petroleum fuels. In other words, petroleum products have the
major market share. However, the improvement in biofuel
technology only influences the biofuel part of the integrated
supply chain rather than the whole one.
From the analysis above, we can conclude that the

uncertainties in fuel demand and the price and availability of
crude oil have the most significant impacts on the total cost,
whereas the uncertainties in technology improvement and
biomass availability are less critical.
Figure 10 shows the evolution of the share of biofuels in the

fuel product marketplace over the planning horizon. The
market share of hydrocarbon biofuels increases from 9% to
around 18% from year 1 to year 20. As the crude oil price
increases and its availability decreases, biomass availability
increases, and as the biofuel technology improves, biofuels will
gain more and more market share. The curve of scenario 18 is
quite similar to the one of scenario 16, this demonstrates again
that the impact of technology evolution is not significant
compared with other type of uncertainties. When comparing
scenario 16 with scenario 13, we can see that increasing the
crude oil price and decreasing its availability do not expand the
market share of biofuels significantly. This is because in both
the two scenarios, the consumption of biomass is close to its
maximum availability, thus increasing the crude oil price does
not increase the biofuel production significantly. In scenario 4,
where the biomass availability is low, the market share of
biofuels increase from 7% to 18% over the planning horizon, of
which the expansion speed is much slower than the other three
scenarios discussed. This again suggests that biomass availability
is the most critical factor influencing the market share.

Figure 8. CDU processing amount in each year.

Figure 9. Total cost for selected scenarios.
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Surprisingly, the ratio in scenario 22, where the demand is high,
is lower than the reference scenario. This is also due to the
biomass availability. As the demand increases, the biofuel
production amount, which is limited by the biomass availability,
is not likely to increase. Therefore, its market share will
decrease. This can also explain why there is a minor drop at the
last three time periods in most scenarios.
Figure 11 shows the planning results of the new hydro-

treating units built for both FCC integration and HCU
integration. We compare the result of the reference scenario
with that of scenario 4 (change in biomass availability) and 22
(change in fuel demand). The triangle marker, circle marker,
and rectangle marker indicates scenario 4, 16, and 22,
respectively. The line in red, purple, and blue represents the
hydrotreating unit 1 (HT1) in refinery 1 (SR1) using FCC
integration, HT2 in SR1 using HCU integration, and HT1 in
SR2 using FCC integration, respectively. As shown, the

processing amount of all the units in all scenarios increases
gradually over the planning horizon. The processing amount for
HT2 is relatively smaller than the other two hydrotreating
units. This is due to the smaller capacity of HT2, which is
determined by the first-stage design decisions. Moreover, in
scenario 4, the processing amount of all the units is smaller than
that in other scenarios. This is because scenario 4 has the LOW
biomass availability, which leads to less biofuel production. In
scenario 22, where fuel demand is high, the processing amount
either rapidly increases to the maximum capacity level (HT1
using FCC integration in both SR1 and SR2) or is much higher
than that in other scenarios (HT2 using HCU integration in
SR2). Therefore, high fuel demand leads to high processing
amount.

Figure 10. Product demand fulfilled by biofuels in each time period.

Figure 11. Planning of new hydrotreating units over 20 years.
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■ CONCLUSIONS
This paper addresses the optimal design and strategic planning
of the integrated hydrocarbon biofuel and petroleum supply
chain system under quantity uncertainty. We analyzed the
performance and benefit for supply chain integration. Distinct
from most works in this field, we explicitly considered the
equipment units and material flows in the petroleum process,
thus seamlessly connecting the supply chain design and process
operation. More importantly, we took into account the various
uncertainties inherent in the integrated supply chain system,
thus deriving an optimal solution that would be viable in the
dynamic marketplace. A two-stage stochastic MILP model was
developed in this work to optimize the design and planning of
the integrated supply chain network. The proposed model was
illustrated by a case study involving 39 geographically explicit
locations. The planning decisions spanned over 20 years in the
presence of four groups of uncertainty. Results indicated the
gradual expansion of biofuel market shares from 7% to 20%
over the project lifetime. Our analysis of the 24 scenarios
suggested that the total cost of the integrated supply chain was
quite sensitive to changes in fuel demand, crude oil price, and
availability, while biomass availability had a great impact on the
biofuel market share.
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